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ABSTRACT

We extend the paper with the same title that composes the WIT Report 2006. The new material
includes an updated description of our depth-velocity determination algorithm and the incorporation
of a 3D synthetic example. Our results show that the method works well in the present 3D situation.

INTRODUCTION

This work is a continuation of our previous paper, Iversen and Tygel (2006), from now on referred to as
Paper I. Our objective is to present theory and numerical examples for a 3D image-ray tracing and depth-
velocity estimation algorithm. As also indicated in Paper I, we rely on the analysis and many results of
the pioneering works of Cameron et al. (2006) in 2D and Cameron et al. (2007) in 3D. It differs, however,
in the algorithm of image-ray tracing and the construction of depth velocities. The algorithm presented in
Cameron et al. (2007) requires that the time-migrated velocity field is available for at least three different
directions along the measurement surface. Our algorithm uses requires only one direction for the time-
migrated velocity field. As a consequence, the range of practical applications is extended. A discussion on
the actual differences between the two approaches is provided in Appendix A.

In order to have the paper self contained, we review the methodology and main results of Paper I. In
the process, we also update some of the explanations and expressions.

The new algorithm has been applied and discussed on a 3D synthetic example. Our overall impression
from this first test is that the errors generated by the developed image-ray transformation are smaller than
those of the classic vertical-ray transformation, in particular concerning lateral positioning.

NOMENCLATURE

In order to make the mathematical derivations easier to follow, lists of the most important symbols used in
the text are displayed in Table 1. Lower and upper case letters, i and I , used as subscripts may have the
values i = 1, 2, 3, and I = 1, 2, respectively. For three-component vectors we use standard notation, e.g.,
a, while for two-component vectors a bar is written above the symbol, e.g., ā. Vectors are equivalently
considered as column matrices. To distinguish between matrices of size 3 × 3 and 2 × 2, we use the
notations Â and A, respectively. The notation AT is used for the transpose of the matrix A, while A−T

is a shorthand notation for A−1T . In cases where ambiguity may arise, a superscript in the form (q) on
vectors/matrices serves as a label for the coordinate system under consideration. The 3× 1 column vector
containing the first partial derivatives and the 3 × 3 matrix containing the second-order partial derivatives
of a scalar field W with respect to the variables, x = (xi), are written in the forms

∂W

∂x
=
(
∂W

∂xi

)T

and
∂2W

∂x2
=
(

∂2W

∂xi∂xj

)
. (1)
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Symbol Meaning
x = (xi) Global Cartesian coordinates of the depth domain

s̄, r̄, x̄ = (s̄ + r̄)/2, ȳ = (s̄− r̄)/2 Source/receiver and midpoint/half-offset coordinates
at measurement surface

x̄M , a = x̄− x̄M Time-migration apex and aperture vectors at measurement surface
t Time variable of the unmigrated time domain

T M Time variable of the migrated time domain
(x̄, t) Unmigrated time domain coordinates

(x̄M , T M ) Migrated time domain coordinates
θ Migration azimuth

ū = (cos θ, sin θ)T Unit vector in the migration azimuth direction
γ = (γi), γI = xM

I , γ3 = T = T M/2 Ray coordinates for a field of image rays
q = (qi) Local Cartesian coordinates along the image ray

(q̄, γ3), γ3 = T Ray-centered coordinates along the image ray
V M (x̄M , T M ) Time-migration velocity field

for a given migration azimuth
vM

dix(γ) Time-migration interval velocity field
for a given migration azimuth

v(x), v(q) Depth-domain velocity field in global and local Cartesian coordinates
V (γ) Depth-domain velocity field in ray coordinates
F (γ) Velocity spreading factor
M̂(x) 3× 3 symmetric matrix corresponding to

azimuth-dependent migration velocity
x, p Position and slowness vectors of image rays

x0, p0, v0, e0
1, Π0 and γ0 Image-ray quantities at the initial point γ0 = (xM0

I , tMO = 0)

Q̂
(x)
1 , Q̂(q)

1 3× 3 matrices (∂xi/∂γj) and (∂qi/∂γj),
in global and local Cartesian coordinates,

corresponding to plane-wave initial condition
Π Ray propagator matrix

Q1, P1 First set of paraxial matrices,
corresponding to plane-wave initial condition

Q2, P2 Second set of paraxial matrices,
corresponding to point-source initial condition

H = (e1 e2 e3) 3× 3 transformation matrix with columns ei,
the i-th unit vector of the local Cartesian
coordinate system along the image ray

Table 1: Table of most important symbols used in the text.

THEORY

In this section, we explain how we can trace image rays into depth and simultaneously estimate the velocity
along them from the knowledge of a 3D time-migration velocity field in an arbitrary single direction along
the measurement surface. We observe that the required single-direction velocities are extracted from an
underlying full 3D time-migration velocity field.

Coordinate systems: The construction of image rays, as envisaged by our methodology, mainly relies
on the concepts and results of standard kinematic and dynamic ray tracing, as described, e.g. in Červený
(2001). In this way, it is instrumental to introduce, besides a global depth-domain Cartesian coordinate
system, x = (xi), also additional coordinate systems that will be associated to the image rays. The
first of these to be mentioned here is the coordinate system associated with the time-migration domain,
(xM

1 , xM
2 , TM ). Closely connected to the latter is the ray coordinate system, γ = (γi), which defines the

image rays issued from all trace locations of the time-migrated seismic data set. This means that that the
first two coordinates are defined as γ1 = xM

1 , γ2 = xM
2 . For the variable along the ray, γ3, we shall use

the one-way traveltime, denoted by the symbol T . In other words, we have γ3 = T = TM/2. The three-
dimensional curvilinear space formed by the ray coordinates is referred to as the ray domain. Finally, we
shall need also the ray-centered coordinate system, (q1, q2, γ3), introduced by Popov and Pšenčík (1978)
and a corresponding local Cartesian coordinate system, q = (qi), which is attached to each individual point
on the image ray. The vectorial function x(γ) describes a mapping of a point γ in the ray coordinate system
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onto a point x in the global Cartesian coordinate system. Since this mapping is based on the construction
of image rays, we refer to it as the image-ray transformation.

Input data: For the combined image-ray tracing and depth-domain velocity estimation, we assume the
knowledge of a single-direction time-migration velocity function, V M = V M (x̄M , TM , θ), extracted from
a full 3D time-migration velocity field. Here, x̄M = (xM

1 , xM
2 )T specifies a trace in the time-migrated data

set, TM denotes the (two-way) migration time and θ is the angle specifying the direction along which the
migration velocity is given. This angle is referred to in the following as the migration azimuth or, in brief,
just as azimuth.

Prior to applying our ray-tracing method, it is practical to convert the time-migration velocity by Dix’s
method to the so-called time-migration interval velocity,

vM
dix(γ) =

{
d

dTM
[TM (V M )2]

}1/2

=
{
d

dT
[T (V M )2]

}1/2

. (2)

The function vM
dix must possess only weak variations with respect to the (lateral) coordinates γ1 and γ2. In

addition, it is essential for the stability of the ray-tracing procedure that vM
dix and its derivatives ∂vM

dix/∂γi

and ∂2vM
dix/(∂γI∂γJ) are smooth functions of all three coordinates γi.

Kinematic ray tracing: A basis for kinematic ray tracing in 3D isotropic elastic media can be formulated
by the ordinary differential equations (see, e.g., Červený, 2001, Section 3.1.1)

dx
dT

= v2(x)p, and
dp
dT

= − v−1(x)
∂v

∂x
. (3)

Evaluation of the above kinematic ray-tracing equations requires the knowledge of the velocity, V (x) and
its gradient, ∂v/∂x, which we do not have directly access to. As shown below, however, we will overcome
this situation by a further analysis that involves the dynamic ray-tracing system.

Dynamic ray tracing: The dynamic ray-tracing system, also in 3D isotropic elastic media, is now formu-
lated in ray-centered coordinates. For a fixed image ray, we consider the attached local Cartesian coordinate
system, q. For each coordinate, qi, we associate a corresponding unit basis vector, ei. These unit vectors
constitute the columns of an orthonormal transformation matrix,

Ĥ =
(

e1 e2 e3

)
. (4)

The matrix Ĥ can be computed in any point along the ray if we include within the system of ray differential
equations the following equation,

de1

dT
= − v2(e1 ·

dp
dT

)p , (5)

where dp/dT is given by the second relation in equation 3. Knowing the vector e3 = p/‖p‖ and in
addition the vector e1 resulting from numerical integration including equation 5, the vector e2 is easily
obtained by the cross product

e2 = e3 × e1 . (6)

In the following, we use the standard formulation of complete dynamic ray tracing in terms of 4 × 4
matrices in ray-centered coordinates,

dΠ
dT

= SΠ , (7)

with the initial condition

Π0 =
(

I 0
0 I

)
. (8)

Here, Π is the ray propagator matrix with sub-matrices of size 2× 2,

Π =
(

Q1 Q2

P1 P2

)
. (9)



108 Annual WIT report 2007

As is well-known, the first and second set of paraxial matrices, (Q1,P1) and (Q2,P2), can be interpreted
as plane-wave (or telescopic) and point-source components of the propagator matrix, Π (see, e.g., Červený,
2001). Since image rays correspond to an initially plane wave, the relevant set of paraxial matrices is
(Q1,P1). Matrix S in equation 7 has the definition

S =
(

0 v2I
− v−1V 0

)
, where V =

(
∂2v

∂qI∂qJ

)
. (10)

Relating time- and depth-domain velocity functions: In order to simplify the notation, we shall, in the
following, consider three velocity functions, all of them denoted by the letter, v, and distinguished solely by
their arguments: v(x), v(γ) and v(q). More specifically, v(x) and v(γ) will designate the depth-domain
velocity in global Cartesian coordinates and ray coordinates, respectively. In a standard forward ray-tracing
application, i.e., when image rays are computed from a known velocity field v(x), the velocity v(γ) can be
obtained for each ray (for which the first two components, γ̄ = (γ1, γ2)T are fixed) simply by assigning
the value v(x) at each position x on the ray to the corresponding coordinate vector γ. Finally, for any
selected point on the ray, v(q) defines the velocity in the local Cartesian coordinate system.

As shown in Appendix B, the ray-domain velocity, V (γ), will be given by

V (γ) = vM
dix(γ)F (γ), (11)

where F , referred to as the velocity spreading factor, is given by

F (γ) =
ūT Q2

−1Q1ū{
ūT Q−1

2 Q−T
2 ū

}1/2
. (12)

In the 2D situation, the factor F reduces to the simple formula

F (γ) = Q1, (13)

where Q1 is the scalar that corresponds, in 2D propagation, to the 2× 2 transformation matrix, Q1, which
refers to the 3D situation. Expression 13 coincides with the one given in Cameron et al. (2006, 2007).

We note that, although vM
dix is directly available as input, the factor F depends on quantities belonging

to dynamic ray tracing along the image ray. This means that our image-ray construction must contemplate
a simultaneous solution of the kinematic and dynamic ray-tracing systems.

Derivatives of velocity functions: We now address the problem of determining the velocity derivatives
∂V/∂x and ∂2v/∂q̄2 that are needed in the kinematic and dynamic ray-tracing systems formulated above.
These will be given in terms of the ray-domain velocity derivatives, ∂v/∂γ and ∂2v/∂γ̄2, respectively. The
latter derivatives are, in turn, closely related to the corresponding derivatives of our input time-migration
interval velocity field, vM

dix.
For first-order derivatives, a simple application of the chain rule of advanced calculus yields

∂V

∂γi
=
∂xk

∂γi

∂v

∂xk
, (14)

and also introduces the matrix

Q̂(x)
1 =

(
∂xi

∂γj

)
(15)

of the transformation between ray coordinates (γi) and global Cartesian coordinates (xk). Furthermore,
one can relate matrix Q̂(x)

1 to its counterpart, Q̂(q)
1 = (∂qi/∂γj), in local Cartesian coordinates by the

transformation

Q̂(x)
1 = ĤQ̂(q)

1 , where Q̂(q)
1 =

 Q1
0
0

0 0 v

 . (16)
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We recall that Ĥ is the 3 × 3 matrix given by equation 4 and Q1 is the 2 × 2 upper left submatrix of the
4 × 4 ray-centered propagator matrix, Π, of equation 9. Under the assumption that the inverse matrix,
(Q̂(x)

1 )−1 = (∂γi/∂xj), exists (or equivalently, that det Q̂(x) 6= 0), equation 14 can be recast as

∂v

∂x
= (Q̂(x)

1 )−T ∂V

∂γ
. (17)

The existence of the inverse matrix (Q̂(x)
1 )−1 for all considered values of the ray-coordinate vector γ

ensures a one-to-one correspondence between ray coordinates and depth-domain coordinates, x = x(γ)
and γ = γ(x). Thus, in this particular situation each point in the depth domain is connected to the
measurement surface by at most one image ray only, and the image-ray field does not contain caustic
points. We remark, in passing, that the condition det Q̂(x)

1 6= 0 has to be fulfilled in any implementation
of the image-ray construction considered here. To obtain the relationship between the second derivatives
of velocity in ray coordinates and local Cartesian coordinates, the chain rule needs to be applied twice. As
shown in Appendix C, we have

∂2V

∂qN∂qM
=
∂γI

∂qN

∂γJ

∂qM

(
∂2V

∂γI∂γJ
− ∂2qK
∂γI∂γJ

∂V

∂qK

)
+MNM

∂V

∂T
, (18)

where MNM = ∂2T/∂qN∂qM . At this point, it is essential to emphasize that conventional dynamic ray
tracing for a single ray does not allow computation of derivatives of qK of order two and higher. Hence,
we can conclude that if the procedure is to be based on computations along a single ray only, we have to
make the assumption that such derivatives have negligible values. Given that this assumption is satisfied,
equation 18 can be approximated by the simpler matrix expression

∂2V

∂q̄2
= Q−T

1

∂2V

∂γ̄2
Q−1

1 + M1
∂V

∂T
, (19)

where M1 = ∂2T/∂q̄2 = P1Q−1
1 . Equations 17 and 18 (or equation 19) provide the link between

the first and second derivatives of velocity with respect to ray coordinates and the corresponding velocity
derivatives with respect to global Cartesian coordinates and ray-centered coordinates, respectively. As seen
in the next section, this link will be crucial for the image-ray tracing and velocity estimation algorithm that
is proposed here.

Numerical integration along the image ray: Collecting results, the complete set of ordinary differential
equations integrated to obtain the image ray is specified by equations 3, 5, and 7. As input to the evaluation
of the right-hand side of the differential equations, we have the independent variable along the ray, T ,
and the set of dependent variables, x, p, e1, and Π. We also need as input the horizontal coordinates
of the starting point of the image ray, xM0

I , the unit vector corresponding to the migration azimuth, ū,
and the time-migration interval velocity field, vM

dix(γ). An important part of the procedure is on-the-fly
transformation of function values, first derivatives, and second derivatives belonging to the time-migration
interval velocity field, vM

dix(γ), to corresponding quantities in the ray-domain velocity field, V (γ). For
a better appreciation of the numerical integration scheme that is central to our time-to-depth conversion
algorithm, we have specified in Table 2 the sequence of computational operations involved in the evaluation
of the differential equations. It has been assumed that derivatives along a ray of ray-centered coordinates,
qK , of higher order than one in the ray parameters, γI , can be neglected. For the isotropic conditions under
consideration, the ray-domain velocity can be obtained, besides from equation 11, as the inverse length of
the slowness vector, V = ‖p‖−1. This provides a possibility of checking the numerical accuracy during
integration of the differential equations. For details concerning computation of velocity derivatives along
the image ray, see Appendix D.

Initial conditions for tracing the image ray: In order solve the kinematic and dynamic ray-tracing
systems, initial conditions have to be provided. These consist of initial values, x0, p0, e1

0, and Π0, given
for the initial ray coordinate vector γ0 = (γ0

1 , γ
0
2 , γ

0
3)T . Assuming, for simplicity, a planar horizontal
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Step # Description Equation #
1 Form the vector γ = (γ1, γ2, T )T , where γ1 = xM0

1 and γ2 = xM0
2

are fixed for all computations along the ray.
2 Evaluate the time-migration interval velocity, vM

dix , and its derivatives,
∂vM

dix/∂γI and ∂2vM
dix/∂γI∂γJ .

3 Calculate the factors A, B, and F :
A = ūT Q−1

2 Q1ū and B = ūT Q−1
2 Q−T

2 ū , 53
F = A/B1/2 . 54

4 Establish the depth-domain velocity, V = vM
dix F . 11

5 Evaluate the differential equations
dx/dT = v2p , 3
dQI/dT = v2PI . 7, 9, 10

6 Find the two remaining basis vectors of the local Cartesian coordinate system, using
e3 = p/‖p‖ and e2 = e3 × e1 . 6
This yields the transformation matrix Ĥ = (e1 e2 e3) . 4

7 Use the transformation
Q̂(x) = ĤQ̂(q) . 16

8 Find derivatives of the factors A, B, and F , using the equations
∂A/∂T = −V 2ūT Q2

−1Q2
−T ū = −V 2 B 55

∂B/∂T = − 2V 2ūT Q2
−1P2Q2

−1Q2
−T ū . 55

∂F/∂T = (∂A/∂T ) B1/2 − (∂B/∂T ) (A/2)B−3/2. 54
9 Apply approximations for derivatives of factor F along the ray,

which yields
∂V /∂γI = ∂vM

dix/∂γI F and ∂V /∂T = ∂vM
dix/∂T F + vM

dix ∂F/∂T . 52
10 Obtain the velocity gradient in depth-domain Cartesian coordinates by

∂v/∂x = (Q̂(x))−T ∂V /∂γ . 17
11 Evaluate the differential equations for the vectors p and e1,

dp/dT = −v−1 ∂v/∂x , 3
de1/dT = −v2 (e1 · dp/dT ) p . 5

12 Find the approximate second derivatives
∂2V /∂γI∂γJ = (∂2vM

dix/∂γI∂γJ ) F , 52
and apply the transformation
∂2V/∂q̄2 = Q−T

1 (∂2V/∂γ̄2)Q−1
1 + M1(∂V/dT ), with M1 = P1Q

−1
1 . 49

13 As a final step, evaluate the differential equations for matrices PI by
dPI/dT = −v−1VQI . 7, 9, 10

Table 2: Proposed sequence of computational steps involved in the evaluation of the right-hand side of the
system of ray differential equations.

datum surface, x3 = 0, for the time-migrated data, we set γ0
1 = xM0

1 , γ0
1 = xM0

2 as the horizontal
coordinates of the starting point of the image ray. The given pair (xM0

1 , xM0
2 ), also specifies the trace

location in the time-migrated data set that corresponds to the image ray to be constructed. The initial
traveltime of the image ray is γ0

3 = T 0 = 0.
Since the initial slowness vector of an image ray, p0, is always perpendicular to the measurement

surface, the two horizontal slowness vector components will both be zero, i.e., p0
1 = p0

2 = 0. The vertical
slowness vector component is given by the inverse ray-domain velocity, p0

3 = 1/V0, at the trace location
(xM0

1 , xM0
2 ) and zero migration time, tM0 = 2T 0 = 0. Furthermore, one can show (Appendix E) that

the factor F in equation 12 has the limit one when the migration time approaches zero; hence, equation 11
yields the initial ray-domain velocity as

V 0 = vM
dix(γ0) . (20)

Given the above specifications, the kinematic initial conditions for the image ray read

x0 = (xM0
1 , xM0

2 , 0)T and p0 = (0, 0,
1
V 0

)T . (21)

The initial unit vector e1
0 of the ray-centered coordinate system can be chosen quite freely within the

horizontal plane. One option is to align it with the migration azimuth direction, in other words, to specify
e1

0 = (cos θ, sin θ, 0)T . The initial ray propagator matrix, Π0, is the 4 × 4 identity matrix given by
equation 8.
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Figure 1: Left: Depth-domain velocity used for generating input data for the tests. Top: Section x2 = 5
km. Middle: Section x1 = 7 km. Bottom: Depth slice x3 = 2 km

NUMERICAL EXAMPLES

In this section, we consider, as a first illustration of the method, examples based on a 3D model of the
subsurface. Three cross-sections through the P-wave velocity field of this model are shown in Figure I.
The velocity field contains mild lateral variations and is smooth throughout, i.e., it has no interfaces, dis-
continuities, or areas without data.

In order to obtain input data for the numerical tests, image rays were traced a one-way time T = 2 s
downward from a planar measurement surface, located at depth x3 = 0 km. Figure 2 (left) shows image
rays projected into the three global Cartesian coordinate directions. One can observe deviations of rays
from the vertical; still, the velocity variations responsible for these deviations do not introduce triplications
and caustics in the image-ray field. To facilitate display and comparisons of velocities, positions, and their
errors, we show, in the following, all results as functions of the coordinates of the time-migration domain.
As an introduction to this type of display, consider Figure 2 (right), which shows the "true" depth-domain
velocity posted along the generated image rays. By calculating the ray propagator matrix along the rays,
we obtained, as a by-product, the matrix of second derivatives of the one-way diffraction time, which
contains information about migration velocity for any azimuth, θ. Thereafter, we selected specifically the
migration velocity field corresponding to the azimuth θ = 0 degrees (Figure 3) (left) and converted it
to a time-migration interval velocity field (Figure 3) (right), using Dix’s method, see equation 2. The
reason for calculating the input data in this way was to attain control of errors resulting from the image-
ray transformation alone. We remark, in passing, that an equivalent approach to obtaining time-migration
interval velocities is to use equation 38.

The experiments were conducted with two transformations relating the time and depth domains. One
approach was established by neglecting all lateral variations of the time-migration interval velocity. Since
this action results in vertical image rays, we refer to it as the vertical-ray transformation. The other ap-
proach is based on the methodology for the image-ray transformation presented in this paper, but with the
underlying assumption that the derivatives of ray-centered coordinates along a ray, qK , of higher order than
one in the ray parameters, γI , can be neglected.
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Figure 2: Left: Projections of image rays in (top) x2 direction, (middle) x1 direction, and (bottom) x3

direction; Right: Depth-domain velocity as a function of time-domain coordinates. Top: Section x2 =
5 km. Middle: Section x1 = 7 km. Bottom: Time slice TM = 2 s

Considering first the vertical-ray transformation, Figure 4 (left) shows errors in the estimation of the
position (xi) for a selected time slice, TM = 2 s. The corresponding errors resulting from the image-ray
transformation are shown in Figure 4 (right). The latter displays can be interpreted as estimated time-
to-depth conversion errors for a virtual flat horizon in the time-migration domain. A possibility of direct
comparison between the vertical-ray and image-ray transformations is provided in Figure 5 (left). It can be
concluded that the errors arising from the applied image-ray transformation are smaller than those of the
vertical-ray transformation, in particular what regards the error in lateral positioning. From Figure 5 (right)
one can compare the accuracy of the depth-domain velocities obtained by the two approaches. Again, the
image-ray transformation generally yields smaller errors. We remark, however, that this approach is quite
sensitive to the smoothness of the first- and second-order derivatives of the time-migration interval velocity
field.

CONCLUSIONS

Starting from a given three-dimensional time-migration velocity field, available for a single migration az-
imuth, we have presented an efficient scheme to trace image rays and simultaneously estimate the velocity
along them. The obtained velocities can provide, after regularization, a depth-domain velocity field that
can be useful for many seismic applications. These include, e.g., the use of the estimated velocity field as a
macro-velocity model for depth migration or as an initial model for tomographic inversion. The proposed
scheme also provides the basis for time-to-depth conversion without the need for a priori information of
the depth-domain velocity model.

We have greatly benefited from recent investigations that establish the link between the time-migration
interval velocity and the corresponding velocity along the image ray. The resulting algorithm for 3D
image-ray tracing into depth uses a time-migration velocity field known in three different azimuths. In this
paper, besides reviewing the literature, we have introduced an alternative algorithm, which requires the
knowledge of the time-migration velocity field in a single azimuth only. As a consequence, we foresee that
our approach will be easier to use in practice. The new algorithm has been applied and discussed on a 3D
synthetic example. An overall impression from this first test is that the errors generated by the developed
image-ray transformation are smaller than those of the classic vertical-ray transformation, in particular
concerning lateral positioning.
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Figure 3: Left: Time-migration velocity as a function of time-domain coordinates. Top: Section xM
2 = 5

km. Middle: Section xM
1 = 7 km. Bottom: Time slice TM = 2s; Right: Time-migration interval velocity

as a function of time-domain coordinates. Top: Section xM
2 = 5 km. Middle: Section xM

1 = 7 km.
Bottom: Time slice TM = 2 s.

The present scheme is bound to yield best results whenever time migration provides sufficient focusing
and also a reliable time-migration velocity field. As main advantage, it delivers a direct estimation of the
depth-domain velocity, with a minimum of user interaction/intervention. The method is very efficient, as
compared, for example, to full prestack depth migration and associated estimation of depth-domain veloc-
ity parameters. The constraints or limitations of the proposed procedure are the ones basically inherited
by the use of time migration, the ray method, and Dix’s type velocity inversions. For adequate ray-tracing
implementation, the time-migration interval velocity function, as well as its first-and second-order deriva-
tives, all need to be “sufficiently smooth". Moreover, the resolution in the velocity estimation is expected to
be poor for deep and/or thin “layers". As an additional condition for effective implementation, care should
be taken such that the image-ray field has no triplications and caustics.
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Figure 4: Left: Vertical-ray transformation: Depth-domain position errors for time slice TM = 2 s.
Coordinates (top) x1, (middle) x2, and (bottom) x3; Right: Image-ray transformation approach: Depth-
domain position errors for time slice TM = 2 s. Coordinate errors (top) x1, (middle) x2, and (bottom)
x3.
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Červený, V. (2001). Seismic Ray Theory, page 768. Cambridge University Press.

APPENDIX A

COMPARISON WITH THE APPROACH OF CAMERON ET AL. (2007)

The time-to-depth conversion procedure presented in this paper is based on the knowledge of migration
velocity, V M (x̄M , TM , θ), corresponding to a single azimuth, θ. Cameron et al. (2007) presented a differ-
ent time-to-depth conversion approach, relying on the complete information of the variation of migration
velocity with azimuth. This information is contained in the matrix M(x)(x̄M , TM ). When matrix M(x) is
known for all relevant locations in the domain (x̄M , TM ), one can easily obtain the inverse matrix

N(x) = M(x)−1
, (22)

as well as the derivatives

W =
dN(x)

dT
= 2

dN(x)

dTM
. (23)
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Figure 5: Left: Vertical-ray vs. image-ray transformation approaches: Depth-domain position differences
for time slice TM = 2 s. Differences in coordinates (top) x1, (middle) x2, and (bottom) x3; Right: Com-
parisons of depth-domain velocities for time slice TM = 2 s. Error using (top) vertical-ray and (middle)
image-ray transformation. Bottom: Difference between the vertical-ray and image-ray transformations.
The velocity differences in the top, middle, and bottom sub-figures correspond, respectively, to the position
differences in Figures 7, 8, and 9.

Matrix W, constituting the input data for the time-to-depth conversion in the approach of Cameron et al.

(2007), is related to depth-domain velocity, V , and matrix Q↓
1

(x)
by (see their equation 27)

W = V 2

(
Q↓

1

(x)T

Q↓
1

(x)
)−1

. (24)

Introducing a unit azimuth direction vector, ū, and using the above equation, one can write

V 2 = ūT WEū , (25)

where matrix E is defined as

E = Q↓
1

(x)T

Q↓
1

(x)
. (26)

Equation 25 can be compared to our result

V 2 = (vM
dix)2F 2 . (27)

Equations 25 and 27 represent two different bases for time-to-depth conversion and velocity estimation.
The approach based on equation 25, described by Cameron et al. (2007), uses as input the matrix W. The
dynamic ray tracing required for calculation of matrix E involves calculation of matrices Q↓

1 and P↓
1, that

means, calculation of the second set of paraxial matrices is not required. The approach described in this
paper, which is based on equation 27, uses as input the time-migration interval velocity, vM

dix, for a selected
azimuth direction, ū. The dynamic ray-tracing procedure needed for calculation of factor F , however,
requires calculation of both sets of paraxial matrices, (QI ,PI).

APPENDIX B

VELOCITY SPREADING FACTOR FOR THE IMAGE RAY

Derivations for velocity spreading along the image ray in the 2D and multi-azimuth 3D situations were
given in Cameron et al. (2006, 2007). In this appendix, we derive equation 12 for the velocity spreading
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factor, F , pertaining to the single-azimuth 3D case. Our starting point is the relationship between the
(azimuth-dependent) migration velocity, V M (x̄M , TM , θ), to the 2×2 matrix, M(x)(x̄M , TM ), of second
derivatives of one-way, upward, traveltime. Introducing the one-way, downward, migrated time T =
TM/2, it is given by

T [V M ]2 =
1

ūT M(x)ū
, (28)

where ū is the direction vector for the migration azimuth used to obtain the migration velocity, V M . One
can relate matrix M(x) to the corresponding matrix M↑

2 expressed in the ray-centered coordinates for the
upward direction of the image ray, as follows,

M(x) = I∗M↑
2I
∗ , (29)

where

I∗ =
(
−1 0

0 1

)
. (30)

Inserting M↑
2 = P↑

2Q
↑
2

−1
, and applying the relations for backward propagation of the ray propagator

matrix in Iversen (2006), we obtain

M(x) = I∗
(
I∗Q↓

1

T
I∗
)(

I∗Q↓
2

T
I∗
)−1

I∗ = Q↓
1

T
Q↓

2

−T
= Q↓

2

−1
Q↓

1 . (31)

The last operation is a consequence of the fact that matrix M(x) is symmetric. Considering again equation
28, the migration velocity can therefore be calculated from the equation

T [V M ]2 =
1

ūT Q↓
2

−1
Q↓

1ū
. (32)

Substituting equation 32 into the Dix velocity equation 2, we obtain the important relation

(vM
dix)2 =

d

dT

[
1

ūT Q↓
2

−1
Q↓

1ū

]
= −

ūT d

dt
[Q↓

2

−1
Q↓

1]ū[
ūT Q↓

2

−1
Q↓

1ū
]2 . (33)

To compute the derivative in the above equation, we observe that, for an isotropic medium, the differential
equation for paraxial matrix Q↓

I , for I = 1, 2, is

dQ↓
I

dT
= v2P↓

I and also
dQ↓

I

−1

dT
= − v2Q↓

I

−1
P↓

IQ
↓
I

−1
. (34)

The rightmost equation was obtained under the application of the generic formula

dA−1

dT
= − A−1 dA

dT
A−1 , (35)

which results from differentiating both sides of the identity A−1A = I, followed by the application of the
leftmost equation 34. Using the chain rule and also taking into account equations 34, we get

d

dT
[Q↓

2

−1
Q↓

1] = V 2
[
−Q↓

2

−1
P↓

2Q
↓
2

−1
Q↓

1 + Q↓
2

−1
P↓

1

]
= −V 2Q↓

2

−1
[
P↓

2Q
↓
2

−1
−P↓

1Q
↓
1

−1
]
Q↓

1 = −V 2Q↓
2

−1
Q↓

2

−T
, (36)

where we have used the identity

P↓
2Q

↓
2

−1
−P↓

1Q
↓
1

−1
= Q↓

2

−T
Q↓

1

−1
, (37)
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which is a property of the ray propagator matrix (see, e.g., Červený, 2001, equations 4.3.16). Substitution
into the Dix velocity formula 33 yields

(vM
dix)2 = V 2 ūT Q↓

2

−1
Q↓

2

−T
ū[

ūT Q↓
2

−1
Q↓

1ū
]2 . (38)

from which

F 2 =
V 2

(vM
dix)2

=
[ūT Q↓

2

−1
Q↓

1ū]2

ūT Q↓
2

−1
Q↓

2

−T
ū
. (39)

Extracting the square root from both sides yields equation 12 given in the main text.

APPENDIX C

RELATING THE DERIVATIVES OF VELOCITY IN RAY COORDINATES AND LOCAL
CARTESIAN COORDINATES

As in the algorithm derived by Cameron et al. (2007), our scheme requires to connect the derivatives of
velocity in ray and local Cartesian coordinates. More specifically, we need relations between the derivatives
of the velocity functions V (γ1, γ2, γ3) and V (q1, q2, q3). First-order derivatives in the two coordinate
systems are connected by

∂V

∂γi
=
∂qk
∂γi

∂V

∂qk
. (40)

Further differentiation yields

∂2V

∂γi∂γj
=
∂qk
∂γi

∂ql
∂γj

∂2V

∂qk∂ql
+

∂2qk
∂γi∂γj

∂V

∂qk
. (41)

We multiply both sides of equation 41 by the derivatives (∂γi/∂qn) and (∂γj/∂qm). The result is

∂2V

∂qn∂qm
=
∂γi

∂qn

∂γj

∂qm

(
∂2V

∂γi∂γj
− ∂2qk
∂γi∂γj

∂V

∂qk

)
. (42)

The derivatives needed specifically for dynamic ray tracing are ∂2V/∂qN∂qM . Utilizing that ∂γ3/∂qN = 0
and that ∂V/∂q3 = V −1∂V/∂T , we obtain

∂2V

∂qN∂qM
=
∂γI

∂qN

∂γJ

∂qM

(
∂2V

∂γI∂γJ
− ∂2qK
∂γI∂γJ

∂V

∂qK

)
− V −1 ∂γI

∂qN

∂γJ

∂qM

∂2q3
∂γI∂γJ

∂V

∂T
. (43)

In a similar way as for velocity, V , one can relate derivatives of traveltime, T , in ray coordinates and
local Cartesian coordinates, as follows,

∂T

∂γi
=
∂qk
∂γi

∂T

∂qk
, (44)

∂2T

∂γi∂γj
=
∂qk
∂γi

∂ql
∂γj

∂2T

∂qk∂ql
+

∂2qk
∂γi∂γj

∂T

∂qk
. (45)

In the following, we consider only the ray coordinates γI . Moreover, we utilize that traveltime T is constant
along a wavefront, which means that ∂T/∂qK = 0 and ∂2T/∂γI∂γJ = 0. Consequently, equation 45 can
be restated as

0 =
∂qK
∂γI

∂qL
∂γJ

∂2T

∂qK∂qL
+

∂2q3
∂γI∂γJ

∂T

∂q3
. (46)

Applying the definition MKL = ∂2T/∂qK∂qL, and inserting ∂T/∂q3 = V −1, we obtain,

∂2q3
∂γI∂γJ

= −V ∂qK
∂γI

∂qL
∂γJ

MKL . (47)
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The last result is substituted into equation 43, which yields

∂2V

∂qN∂qM
=
∂γI

∂qN

∂γJ

∂qM

(
∂2V

∂γI∂γJ
− ∂2qK
∂γI∂γJ

∂V

∂qK

)
+MNM

∂V

∂T
. (48)

Therefore, for a situation where the effect of the derivatives ∂2qK/∂γI∂γJ is negligible, we can use, in
matrix form, the approximation

∂2V

∂q̄2
= Q−T

1

∂2V

∂γ̄2
Q−1

1 + M1
∂V

∂T
, (49)

where M1 = P1Q−1
1 .

APPENDIX D

COMPUTATION OF VELOCITY DERIVATIVES ALONG THE IMAGE RAY

In this appendix, we describe an approach for computation of the first and second derivatives, ∂V/∂γ and
∂2V/∂γ2 at each ray coordinate vector, γ, that are required for our image-ray tracing scheme. Twice
differentiation of equation 11 yields

∂V

∂γi
=
∂vM

dix

∂γi
F + vM

dix

∂F

∂γi
(50)

and
∂2V

∂γi∂γj
=
∂2vM

dix

∂γi∂γj
F +

[
∂vM

dix

∂γi

∂F

∂γj
+
∂vM

dix

∂γj

∂F

∂γi

]
+ vM

dix

∂2F

∂γi∂γj
. (51)

Since vM
dix and its derivatives are known, our problem reduces to finding the derivatives of the velocity-

spreading factor F , given by equation 12. The factor F depends on the matrices Q1 and Q2 of the dynamic
ray-tracing system. In view of the discussion related to equation 18, it is clear that for a time-to-depth-
conversion procedure based on tracing single image rays, one has to make the approximation that the
derivatives of factor F with respect to γI , along a given ray, are neglected. As a consequence, only the
derivatives in equations 50-51 of F with respect to T survive.

One can show, finally, that our integration procedure does not rely on the second derivatives ∂2V /∂T 2,
which means that calculation of the second derivative ∂2F/∂T 2 is not required. Equations 50-51 can
therefore be restated as

∂V

∂γI
=
∂vM

dix

∂γI
F ,

∂V

∂T
=
∂vM

dix

∂T
F + vM

dix

∂F

∂T
and

∂2V

∂γI∂γJ
=

∂2vM
dix

∂γI∂γJ
F . (52)

Given the above approximations, we are reduced, thus, to the calculation of ∂F/∂T . For that matter, it is
convenient to introduce the quantities

A = ūT Q−1
2 Q1ū and B = ūT Q−1

2 Q−T
2 ū , (53)

from which we can write F and ∂F/∂T as (see equation 12)

F =
A

B1/2
and

∂F

∂T
=
∂A

∂T
B1/2 − A

2B3/2

∂B

∂T
. (54)

It remains to obtain ∂A/∂T and ∂B/∂T . Working similarly to the derivation of equation 36, we readily
find

∂A

∂T
= −V 2ūT Q2

−1Q2
−T ū = −V 2B and

∂B

∂T
= − 2V 2ūT Q2

−1P2Q2
−1Q2

−T ū . (55)

It must be noted that the above formulas for factor F and its derivative ∂F/∂T cannot be used for zero
migration time, for which B = 0. We find, however, that a second-order approximation for the factor F in
the vicinity of T = 0 is given by

F = 1− 1
2
V T 2ūT ∂

2V

∂γ̄2
ū , (56)
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which yields, at T = 0,

F = 1 ,
∂F

∂T
= 0 . (57)

In the 2D situation, we have

F = Q1 ,
∂F

∂T
=
dQ1

dT
= V 2P1 , (58)

which is reduced to equation 57 in the limit of zero time, since at that time Q1 = 1 and P1 = 0.


